Y5 Maths Questions – Lesson 1 Part A

1) The abacus shows a decimal number - the starting number. Follow the maze and write each answer in the table as you go.

Starting number:	a) Add 2 hundredths more.	b) Add 4 tenths.
e) What do I need to add to make each digit after the decimal point 9?	d) Add 0.301 more.	c) Add 0.004 more.

2) Answer these calculations using mental methods and jottings. You could use a hundred square, representing a whole, to help you.

3) Try these calculations, selecting an appropriate method.

1)	0.54 + 0.3A = 0.8B a) What is the greatest value that A can be? Explain	your answer.
	b) What calculation would this give?	
2)	Is this statement always, sometimes or never true? Explain your thinking.	To add decimals, you need to use the column method.

	0	•	?				1		•	4		7						
		+			+		2	2		5		8						
	0	1	?	?			3	:		6		9						
+	0	•	?	?	?	<u>, </u>												
	0	•	?	?	7	•									(2)			
															Š			
													_	and		2		The same
						_	_						-			X A		10
									T						/		X	-
																		Ť
		L	_															+
				\rightarrow														\dagger
		L																1
ou cui					onling		it tite t		atton b	ui aigi	ts can	be rep	eated	in the	answ	er. Wh	at is t	ne
			e tota		oning		it tite c		ation b	ut aigi	ts can	be rep	eated	in the	answ	er. Wh	at is ti	ne
											ts can	be rep	eated	in the	answ	er. Wh	at is ti	ne
							The C				ts can	be rep	eated 	in the	answ	er. Wh	at is t	ne
										ut digi	ts can	be rep	eated 	in the	answ	er. Wh	at is t	ne
									utton b	ur argi	ts can	be rep	eated	in the	answ	er. Wh	at is t	ne
							The c		atton b	ur urgi	ts can	ье гер	eated	in the	answ	er. Wh	at is t	ne
									ation b		ts can	ье гер	eated	in the	answ	er. Wh	at is ti	ne
									utton b	ut digi	ts can	ье гер	eated	in the	answe	er. Wh	at is ti	ne
reates	t poss	sibl	e tota	l?														
gain,	you c	an	use tl	l?	its 1-				e calcul									
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													
gain,	you c	an	use tl	l? ne digi	its 1-													

1) Starting number: 0.243

- b) 0.663
- c) 0.667
- d) 0.968
- e) Add 0.031
- 2) a) 0.39
 - b) 0.58
 - c) 0.66
 - d) 0.62
- 3) a) 0.825
 - b) 0.821
 - c) 0.272
- 1) α) A = 0.05

If the hundredths digit was any greater, this would increase the tenths digit.

- 2) The statement is sometimes true. It would be more efficient to add some numbers mentally/with jottings. For example, to find 0.3 + 0.15, it would be more efficient to add mentally. However, to find the sum of 0.357 + 0.586, the column method would be more reliable.
- 1) There are a variety of possible solutions. For example:

$$0.3 + 0.14 + 0.265 = 0.705$$

$$0.1 + 0.28 + 0.345 = 0.725$$

$$0.5 + 0.16 + 0.298 = 0.958$$

- 2) 0.9 + 0.86 + 0.754 = 2.514 (Also accept other combinations of digits that give the same answer.)
- 3) 0.1 + 0.24 + 0.356 = 0.696 (Also accept other combinations of digits that give the same answer.)

Y5 Maths ANSWERS - Lesson 1 Part B

What mistake has Mary made?

0.41 + 0.3 = 0.413

Can you use at least 2 representations to show why she is incorrect?

Compare the numbers sentences using <, > or =

$$0.7 + 0.03 + 0.001$$
 $0.07 + 0.3 + 0.1$ $0.4 + 0.1 + 0.05$ $0.3 + 0.2 + 0.05$

Mary has added the hundredths to the thousandths place.

>

Annabelle has some digit cards.

1

2

3

4

5

Largest: 0.951

Smallest: 0.159

She uses each card once to make a number sentence

^/bat is the lawrest as a bar about

What is the largest number she can make? What is the smallest?